A REVIEW ON STATE-OF-THE-ART AUTOMATIC SPEAKER VERIFICATION SYSTEM FROM SPOOFING AND ANTI-SPOOFING PERSPECTIVE

Authors

  • Nosirov Asadbek Ulugbek o’g’li Kimyo International University in Tashkent

Keywords:

Automatic Speaker Verification; Spoofed Detection; AntiSpoofing; Voice Conversion; Speech Synthesis; Replay Speech

Abstract

Background/Objectives: The anti-spoofing measures are blooming with an aim to protect the Automatic Speaker Verification systems from susceptible spoofing attacks. This review is an amalgam of the possible attack types, the datasets required, the renowned feature representation techniques, modeling algorithms involving machine learning, and score normalization techniques.

References

Ferrer L, Mclaren M, Brümmer N. A Speaker Verification Backend With Robust Performance Across Conditions. Comput Speech Lang. 2022;71:101258. Available From: Https://Linkinghub.Elsevier.Com/Retrieve/Pii/S0885230821000656Doi:10.1016/j.Csl.2021.101258. Doi:10.1016/j.Csl.2021.101258.

Jahangir R, Teh Yw, Nweke Hf, Mujtaba G, Al-Garadi Ma, Ali I. Speaker Identification Through Artificial Intelligence Techniques: A Comprehensive Review And Research Challenges. Expert Syst Appl. 2021;171:114591. Doi:10.1016/j.Eswa.2021.114591.

Zeinali H, Sameti H, Burget L. Hmm-Based Phrase-Independent i-Vector Extractor For Text-Dependent Speaker Verification. Ieee/Acm Trans Audio, Speech. 2017;25(7):1421–1456. Available From: Http://Ieeexplore.Ieee.Org/Document/7902120/Doi:10.1109/Taslp.2017.2694708.

Mtibaa A, Petrovska-Delacrétaz D, Boudy J, Hamida Ab. Privacy-Preserving Speaker Verification System Based On Binary I-Vectors. Iet Biometrics. 2021;10(3):233–278. Available From: Https://Ietresearch.Onlinelibrary.Wiley.Com/Doi/Full/10.1049/Bme2.12013Doi:10.1049/Bme2.12013.

Yamagishi J, Todisco M, Sahidullah M, Delgado H, Wang X, Evans N. Automatic Speaker Verification Spoofing And Countermeasures Challenge Evaluation Plan. Asv Spoof. 2019. Available From: Http://Dx.Doi.Org/10.7488/Ds/1994.

Nautsch A, Wang X, Evans N, Kinnunen Th, Vestman V, Todisco M. Spoofing Countermeasures For The Detection Of Synthesized, Converted And Replayed Speech. Ieee Trans Biometrics, Behav Identity Sci. 2019;3(2):252–265. Available From: 10.1109/Tbiom.2021.3059479.

Yan C, Long Y, X J, Xu W. The Catcher In The Field. In: Proceedings Of The 2019 Acm Sigsac Conference On Computer And Communications Security. Acm. 2019;p. 1215–1244. Doi:10.1145/3319535.3354248. 8) Matsubara K, Okamoto T, Takashima R, Takiguchi T, Toda T, Shiga Y. High-Intelligibility Speech Synthesis For Dysarthric Speakers With Lpcnet-Based Tts And Cyclevae-Based Vc. In: Ieee International Conference On Acoustics, Speech And Signal Processing. Institute Of Electrical And Electronics Engineers ;p. 7058–7062. Doi:10.1109/Icassp39728.2021.9414136.

Mohammadi Sh, Kain A. An Overview Of Voice Conversion Systems. Speech Commun. 2017;88:65–82. 10) Marcel S, Nixon M, Fierrez J, Evans N. Handbook Of Biometric Anti-Spoofing. 2019.

Wu Z, Evans N, Kinnunen T, Yamagishi J, Alegre F, Li H. Spoofing And Countermeasures For Speaker Verification: A Survey. Speech Commun. 2015;66:130– 53. Doi:10.1016/j.Specom.2014.10.005

Published

2024-05-17

How to Cite

Nosirov Asadbek Ulugbek o’g’li. (2024). A REVIEW ON STATE-OF-THE-ART AUTOMATIC SPEAKER VERIFICATION SYSTEM FROM SPOOFING AND ANTI-SPOOFING PERSPECTIVE. Ethiopian International Journal of Multidisciplinary Research, 11(05), 188–198. Retrieved from https://www.eijmr.org/index.php/eijmr/article/view/1492