COMPUTATIONAL MODELING OF ENGLISH GRAMMATICAL STRUCTURES

Authors

  • Kalimbetova Kizlargul Yusupovna Nukus State Pedagogical Institute named after Ajiniyaz English Assistant Teacher

Keywords:

computational linguistics, English grammar, natural language processing, syntactic parsing, language models

Abstract

This paper explores recent advancements in computational modeling techniques for analyzing the complex grammatical structures found in the English language. We review key methods including part-of-speech tagging, dependency parsing, and statistical language models, and assess their effectiveness in capturing syntactic patterns. Computational modeling offers powerful tools for illuminating the structural properties of English grammar, with applications spanning text processing, language learning, and the development of more human-like language technologies.

References

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT press.

Jurafsky, D., & Martin, J. H. (2020). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (3rd ed.). Prentice Hall.

Brants, T. (2000). TnT: a statistical part-of-speech tagger. In Proceedings of the sixth conference on Applied natural language processing (pp. 224-231). Association for Computational Linguistics.

Akbik, A., Blythe, D., & Vollgraf, R. (2018). Contextual string embeddings for sequence labeling. In Proceedings of the 27th International Conference on Computational Linguistics (pp. 1638-1649).

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (pp. 4171-4186).

Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis Lectures on Human Language Technologies, 2(1), 1-127.

Dozat, T., & Manning, C. D. (2017). Deep biaffine attention for neural dependency parsing. In 5th International Conference on Learning Representations.

Турдиева, Г., & Абишов, М. (2024). ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗМЕНЕНИЕ СУММЫ НАЛОГА НА ПРИБЫЛЬ КОММЕРЧЕСКИХ БАНКОВ. STUDIES IN ECONOMICS AND EDUCATION IN THE MODERN WORLD, 3(2), 9-18.

Turdieva, G. O., Utepbergenov, A., & Bekimbetova, G. (2024). DEVELOPMENT OF PERIODIC COST ACCOUNTIN Turdiyeva, G., & Kadirbaeva, A. (2024, February). DEVELOPMENT POINTS OF THE FACTOR ANALYSIS OF THE PROFIT TAX OF COMMERCIAL BANKS. In Proceedings of International Conference on Scientific Research in Natural and Social Sciences (Vol. 3, No. 2, pp. 114-118).G IN BUSINESS ENTITIES IN ACCORDANCE WITH INTERNATIONAL STANDARDS OF FINANCIAL ACCOUNTING. STUDIES IN ECONOMICS AND EDUCATION IN THE MODERN WORLD, 3(2), 19-22.

Sarsenbaevich, A. M., Omirbayevna, T. G., & Ilham, N. (2021). Ways to Increase the Influence of Taxes in The Development of Financial and Economic Activities of Construction Enterprises. International Journal on Economics, Finance and Sustainable Development, 3(5), 85-90.

Turdieva, G., Abishov, M., & Muratbaev, I. (2024). THE IMPACT OF CREDIT RISKS ON AN EFFECTIVE ORGANIZATION IN THE FINANCIAL SERVICES OF COMMERCIAL BANKS. NRJ, 1(4), 215-225.

Элмуротов, Ж. Ш., & Азимова, Ч. А. (2023). ҚАДИМГИ ШАРҚ ВА АНТИК ДАВР ФАЛСАФАСИНИНГ ЎЗАРО ФАРҚ ҚИЛУВЧИ ВА ЎХШАШ ЖИҲАТЛАРИ. Academic research in educational sciences, 4(5), 669-677.

Азимова, Ч. А. (2022). ГЛОБАЛЛАШУВ ДАВРИДА ЭРКИНЛИК ТУШУНЧАСИНИНГ ИЖТИМОИЙ-ФАЛСАФИЙ ТАҲЛИЛИ. Academic research in educational sciences, 3(6), 410-415.

Байназаров, М. М., Миркасимова, Х. Х., Саидалиев, С. С., Камолходжаев, Д. А., & Тураев, Б. Ш. (2023). Выявление маркеров хантавирусной инфекции в Узбекистане.

Halimovna, K. D. Senior teacher of Bukhara State University.

Halimovna, K. D. SCIENCE, RESEARCH AND DEVELOPMENT.

Karimova, D. H. (2018). Tulaganova DA PECULIAR FEATURES OF GERMAN LITERATURE IN THE SECOND HALF OF THE XX CENTURY. Scientific reports of Bukhara State University, 1(2), 120-124.

Каримова, Д. Х. (2019). Вариантность в переводе (на примере произведений Братьев Гримм). Вестник науки и образования, (4-2 (58)), 43-46.

Narzullayeva, F. (2024). MAQOL VA AFORIZMLARNING AHAMIYATI. ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 49(49).

Иззетова, Э. М., & Ли, Е. В. (2022). Философский анализ образования и науки в контексте глобальных культурных трансформаций. Academic research in educational sciences, 3(NUU Conference 2), 326-331.

Izzetova, E. M., & Li, Y. V. (2022). Philosophical and hermeneutic analysis of the symbolic worldview in the context of the aestetic culture of China. International Journal of Multicultural and Multireligious Understanding, 9(2), 284-292.

Rakhmatullayeva, S. (2023). PROBLEMS OF PRAGMATIC LEARNING OF GRAMMATICAL FORMS. Science and innovation, 2(B2), 408-411.

Рахматуллаева, Ш. З. (2016). РОЛЬ ЭТНИЧЕСКИХ ФАКТОРОВ РЕАЛИЗАЦИИ ГРАММАТИЧЕСКИХ ЗНАЧЕНИЙ ФОРМ СПОСОБА ДЕЙСТВИЯ. Журнал научных публикаций аспирантов и докторантов, (6), 61-63.

Abdullayeva, N. (2023). AHMAD YASSAWI SECT: THE ISSUE OF ZIKR AND THE STATUS OF ZAKIR. Modern Science and Research, 2(5), 438-440.

Aripovna, R. S., & Qizi, S. M. A. (2023, May). EFFECTIVE METHODS OF TEACHING ENGLISH TO YOUNG CHILDREN. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 8, No. 1).

Choi, J. D., Tetreault, J., & Stent, A. (2015). It depends: Dependency parser comparison using a web-based evaluation tool. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 387-396).

Published

2024-06-26

How to Cite

Kalimbetova Kizlargul Yusupovna. (2024). COMPUTATIONAL MODELING OF ENGLISH GRAMMATICAL STRUCTURES. Ethiopian International Journal of Multidisciplinary Research, 11(06), 329–332. Retrieved from https://www.eijmr.org/index.php/eijmr/article/view/1786