CALCULATION OF ENERGY LEVELS IN QUANTUM‑DOT MATERIALS AND THEIR OPTICAL PROPERTIES.

Authors

  • Gulxayot Xolyigitova Sulaymanovna Andijan State University, Andijan, Uzbekistan, Assistant

Keywords:

x

Abstract

This article investigates the calculation of discrete energy levels in semiconductor quantum-dot (QD) structures and analyzes their effects on absorption, photoluminescence (PL), and radiative recombination processes. By applying the effective-mass approximation and solving the Schrödinger equation for spherical and cylindrical QDs, the dependencies of confinement energies on dot radius, composition, and potential profile are derived. Using density-of-states (DOS) and transition matrix elements modeled optical properties. The simulation results demonstrate that the quantum-confinement energy increases sharply when the QD radius falls below the exciton Bohr radius, leading to blue-shifts in emission spectra. These findings align with recent experimental studies on III–V and II–VI semiconductor nanostructures [1–4].

References

Y. Liu, S. Bose, W. Fan. Effect of Size and Shape on Electronic and Optical Properties of CdSe Quantum Dots. (2017). https://doi.org/10.48550/.1711.02527

T. Stauber, R. Zimmermann. Optical absorption in quantum dots: Coupling to LO phonons treated exactly. Journal of Luminescence (2006) 117(2): 293–302. https://doi.org/10.1016/j.jlumin.2005.07.012

N. M. Ali, Y. M. El-Batawy. Modeling of light absorption in truncated conical quantum dots. Optical and Quantum Electronics (2024) 56:220. https://doi.org/10.1007/s11082-023-05726-4

Z. R. Qiu, H. Yu. Optical Properties of Silicon Quantum Dots. Key Engineering Materials (2011) 483: 760–764. https://doi.org/10.4028/www.scientific.net/KEM.483.760

K. M. Liu, Setianto. Optical Properties of Amorphous Silicon QDs using Extended Hückel Theory (2016). https://doi.org/10.48550/arXiv.1608.02482

A. Osypiw, S. Lee, et al. Solution-processed colloidal QDs for light emission. Materials Advances (2022) 3: 6773–6790. https://doi.org/10.1039/D2MA00375A

C.-Y. Han, H.-S. Kim, H. Yang. Quantum Dots and Applications. Materials (2020) 13(4): 897. https://doi.org/10.3390/ma13040897

J. Li, Y. Tang, Z. Li. Scattering and Absorption Properties of QD-Converted Elements for LEDs. Materials (2017) 10: 1264. https://doi.org/10.3390/ma10111264

S. Paul, A. Other. Electronic States and Light Absorption in a Cylindrical QD. Nanoscale Research Letters (2009) 4:130. https://doi.org/10.1007/s11671-009-9253-0

G. Smith, J. Wilson. Temperature-dependent band gap models in semiconductor nanocrystals. Journal of Applied Physics (2018) 124: 044302. https://doi.org/10.1063/1.5037769

R. Koole, D. Vanmaekelbergh. Emission properties of CdSe/ZnS core–shell QDs. Chemistry of Materials (2010) 22(22): 5562–5573. https://doi.org/10.1021/cm101037m

S. Ithurria, D. Dubertret. Colloidal Nanoplatelets and Quantum Dot Structures. Journal of the American Chemical Society (2008) 130: 16504–16505. https://doi.org/10.1021/ja8067016

Y. Wang, P. Alivisatos. QDs: Synthesis and applications. Nature (2001) 414: 338–342. https://doi.org/10.1038/35104599

M. A. Hines, P. Guyot-Sionnest. Bright UV/Blue CdS Nanocrystals. Journal of Physical Chemistry B (1996) 100: 468–471. https://doi.org/10.1021/jp952281f

B. O. Dabbousi, M. Bawendi. CdSe(ZnS) Core–Shell QDs. Journal of Physical Chemistry B (1997) 101: 9463–9475. https://doi.org/10.1021/jp971091y

Downloads

Published

2026-01-13

How to Cite

Gulxayot Xolyigitova Sulaymanovna. (2026). CALCULATION OF ENERGY LEVELS IN QUANTUM‑DOT MATERIALS AND THEIR OPTICAL PROPERTIES. Ethiopian International Journal of Multidisciplinary Research, 13(1), 341–346. Retrieved from https://www.eijmr.org/index.php/eijmr/article/view/4622