TECHNOLOGICAL ASSESSMENT OF TUNGSTEN TAILINGS REPROCESSING FOR FINE AND ULTRAFINE MINERAL RECOVERY

Authors

  • Boymurodov Najmiddin Abduqodirovich, Bo‘riyev Sardor Sayfullayevich, Mamadaliyeva Intizor Muxamedovna Karshi State Technical University

Keywords:

tungsten tailings, reprocessing technology, fine particle recovery, magnetic separation, flotation, sustainable mining

Abstract

Tungsten is a critical strategic metal widely used in high-technology and industrial applications due to its exceptional hardness, density, and thermal stability. The present study evaluates the technological potential of tungsten tailings as a secondary resource and analyzes advanced reprocessing methods for fine and ultrafine tungsten recovery. Comparative assessment of gravity separation, wet high-intensity magnetic separation, flotation, chemical leaching, and bioleaching was conducted. The results indicate that integrated processing schemes combining enhanced physical and physicochemical methods provide the highest recovery efficiency. The study highlights the importance of technological optimization for sustainable resource utilization and environmentally responsible mine waste management.

References

Shen, L.; Li, X.; Lindberg, D.; Taskinen, P. Tungsten extractive metallurgy: A review of processes and their challenges for sustainability. Minerals Engineering, 2019, 142, 105934.

Han, Z.; Golev, A.; Edraki, M. A review of tungsten resources and potential extraction from mine waste. Minerals, 2021, 11(7), 701.

Liu, H.; Liu, H.; Nie, C.; Zhang, J.; Steenari, B.M.; Ekberg, C. Comprehensive treatments of tungsten slags: A critical review. Journal of Environmental Management, 2020, 270, 110927.

Dvořáček, J.; Sousedíková, R.; Vrátný, T.; Jureková, Z. Global tungsten demand and supply forecast. Archives of Mining Sciences, 2017, 62(1), 3–12.

Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. A review of tungsten: From environmental obscurity to scrutiny. Journal of Hazardous Materials, 2006, 136(1), 1–19.

Calvo, G.; Valero, A.; Valero, A. How can strategic metals drive the economy? Tungsten and tin production during periods of war. The Extractive Industries and Society, 2019, 6(1), 8–14.

Абдисамиевич С.А., Мамарасулович Р.У. и Азаматугли К.О. (2025). РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ГЛИНОЗЕМИЯ ИЗ МЕСТНОГО СЫРЬЯ. Sanoatda raqamli technologiyalar/Цифровые технологии в промышленности , 3 (2), 105-111.

Grey, I.E.; Birch, W.D.; Bougerol, C.; Mills, S.J. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. Journal of Solid State Chemistry, 2006, 179, 3860–3869.

Lassner, E.; Schubert, W.D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Springer, Boston, 1999.

Хужакулов, Н. Б., Рузиев, У. М., & Насирова, Н. Р. (2021). ИССЛЕДОВАНИЯ ВЛИЯНИЯ КАЧЕСТВА БИОКЕКА НА ПОКАЗАТЕЛИ СОРБЦИОННОГО ВЫЩЕЛАЧИВАНИЯ. Universum: технические науки, (5-2 (86)), 20-23.

U.S. Geological Survey. Mineral Commodity Summaries: Tungsten. Reston, VA, 2024.

Martins, F.; Castro, H. Significance ranking method applied to critical raw materials in a circular economy. Procedia CIRP, 2019, 84, 1059–1062.

Downloads

Published

2026-02-15

How to Cite

Boymurodov Najmiddin Abduqodirovich, Bo‘riyev Sardor Sayfullayevich, Mamadaliyeva Intizor Muxamedovna. (2026). TECHNOLOGICAL ASSESSMENT OF TUNGSTEN TAILINGS REPROCESSING FOR FINE AND ULTRAFINE MINERAL RECOVERY. Ethiopian International Journal of Multidisciplinary Research, 13(2), 878–882. Retrieved from https://www.eijmr.org/index.php/eijmr/article/view/5164